Showing posts with label MIT Media Lab. Show all posts
Showing posts with label MIT Media Lab. Show all posts

Thursday, January 12, 2012

Laptop

A laptop, also called a notebook,[1][2] is a personal computer for mobile use.[3][4] A laptop integrates most of the typical components of a desktop computer, including a display, a keyboard, a pointing device (a touchpad, also known as a trackpad, and/or a pointing stick) and speakers into a single unit. A laptop is powered by mains electricity via an AC adapter, and can be used away from an outlet using a rechargeable battery.
Portable computers, originally monochrome CRT-based and developed into the modern laptops, and were originally considered to be a small niche market, mostly for specialized field applications such as the military, accountants and sales representatives. As portable computers became smaller, lighter, cheaper, more powerful and as screens became larger and of better quality, laptops became very widely used for all sorts of purposes.

Wednesday, January 11, 2012

The Art of 3-D Printing


As part of our special report on manufacturing, we asked Neri Oxman, a professor at the MIT Media Lab and an internationally recognized artist whose work is part of the permanent collection at the Museum of Modern Art in New York, to create a sculpture that would illustrate the future of manufacturing. (See a gallery of images).
What she produced, in collaboration with MIT materials science professor Craig Carter, is a powerful demonstration of the possibilities of 3-D printing, using techniques that take advantage of the capabilities of 3-D printers in ways that conventional manufacturing techniques cannot.  
3-D printing encompasses a range of technologies—from inkjet heads mounted on gantries that can deposit plastics layer by layer to form intricate models, to more recent laser-based systems that sinter metal powders to make durable parts for airplanes. 3-D printers have mainly been used for prototyping, but they are becoming an option for manufacturing as well, and may eventually even be used to print buildings, Oxman says. But designers and architects haven't yet learned to take advantage of their capabilities.
Oxman, who trained as an architect, says buildings are designed today with an eye toward the components they can be made of—sheets of plywood, panes of glass, steel beams, and concrete columns. As a result, those designs are limited, in much the way Lego bricks constrain the shapes that children can build. There are similar limitations in conventional manufacturing; there are some shapes that simply can't be built with existing molds and machining tools, and designers have had to design with these limits in mind.
Oxman is exploring ways to break with conventional design thinking by looking to patterns and processes found in nature, and using equations that define these processes to generate new designs. The results are often surprising shapes and structures that can be made only with 3-D printers.
To help develop the algorithms needed, Oxman has teamed up with Carter and others. In some cases, the algorithms provide new aesthetics, but they can also have practical applications—such as varying the structure to help bear loads. For one sculpture—a model of a chaise longue reclined chair—Oxman combined algorithms taken from nature with a map of the pressure a body exerts on a chair. The result depends on where the algorithms determine the chair needs to be soft to provide comfort and where it needs to be stiff to provide support.